DRAFT

Grade 6 Mathematics Item Specifications

The draft Florida Standards Assessments (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as provided in CPALMs. The Specifications are a resource that defines the content and format of the test and test items for item writers and reviewers. Each grade-level and course Specifications document indicates the alignment of items with the Florida Standards. It also serves to provide all stakeholders with information about the scope and function of the FSA.

Item Specifications Definitions

Also assesses refers to standard(s) closely related to the primary standard statement.

Clarification statements explain what students are expected to do when responding to the question.

Assessment limits define the range of content knowledge and degree of difficulty that should be assessed in the assessment items for the standard.

Item types describe the characteristics of the question.
Context defines types of stimulus materials that can be used in the assessment items.

- Context - Allowable refers to items that may but are not required to have context.
- Context - No context refers to items that should not have context.
- Context - Required refers to items that must have context.

Technology-Enhanced Item Descriptions:

The Florida Standards Assessments (FSA) are composed of test items that include traditional multiple-choice items, items that require students to type or write a response, and technology-enhanced items (TEI). Technology-enhanced items are computer-delivered items that require students to interact with test content to select, construct, and/or support their answers.

Currently, there are nine types of TEIs that may appear on computer-based assessments for FSA Mathematics. For students with an IEP or 504 plan that specifies a paper-based accommodation, TEIs will be modified or replaced with test items that can be scanned and scored electronically.

For samples of each of the item types described below, see the FSA Training Tests.

Technology-Enhanced Item Types - Mathematics

1. Editing Task Choice - The student clicks a highlighted word or phrase, which reveals a drop-down menu containing options for correcting an error as well as the highlighted word or phrase as it is shown in the sentence to indicate that no correction is needed. The student then selects the correct word or phrase from the drop-down menu. For paper-based assessments, the item is modified so that it can be scanned and scored electronically. The student fills in a circle to indicate the correct word or phrase.
2. Editing Task - The student clicks on a highlighted word or phrase that may be incorrect, which reveals a text box. The directions in the text box direct the student to replace the highlighted word or phrase with the correct word or phrase. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.

3. Hot Text -

a. Selectable Hot Text-Excerpted sentences from the text are presented in this item type. When the student hovers over certain words, phrases, or sentences, the options highlight. This indicates that the text is selectable ("hot"). The student can then click on an option to select it. For paper-based assessments, a "selectable" hot text item is modified so that it can be scanned and scored electronically. In this version, the student fills in a circle to indicate a selection.
b. Drag-and-Drop Hot Text - Certain numbers, words, phrases, or sentences may be designated "draggable" in this item type. When the student hovers over these areas, the text highlights. The student can then click on the option, hold down the mouse button, and drag it to a graphic or other format. For paperbased assessments, drag-and-drop hot text items will be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
4. Open Response - The student uses the keyboard to enter a response into a text field. These items can usually be answered in a sentence or two. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
5. Multiselect - The student is directed to select all of the correct answers from among a number of options. These items are different from multiplechoice items, which allow the student to select only one correct answer. These items appear in the online and paper-based assessments.
6. Graphic Response Item Display (GRID)- The student selects numbers, words, phrases, or images and uses the drag-and-drop feature to place them into a graphic. This item type may also require the student to use the point, line, or arrow tools to create a response on a graph. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
7. Equation Editor- The student is presented with a toolbar that includes a variety of mathematical symbols that can be used to create a response. Responses may be in the form of a number, variable, expression, or equation, as appropriate to the test item. For paper-based assessments, this item type may be replaced with a modified version of the item that can be scanned and scored electronically or replaced with another item type that assesses the same standard and can be scanned and scored electronically.
8. Matching Item - The student checks a box to indicate if information from a column header matches information from a row. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.
9. Table Item - The student types numeric values into a given table. The student may complete the entire table or portions of the table depending on what is being asked. For paper-based assessments, this item type may be replaced with another item type that assesses the same standard and can be scanned and scored electronically.

Mathematical Practices:

The Mathematical Practices are a part of each course description for Grades 3-8, Algebra 1, Geometry, and Algebra 2. These practices are an important part of the curriculum. The Mathematical Practices will be assessed throughout.

	Make sense of problems and persevere in solving them.
MAFS.K12.MP.1.1:	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.
MAFS.K12.MP.2.1:	Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Construct viable arguments and critique the reasoning of others.
Mathematically proficient students understand and use stated
assumptions, definitions, and previously established results in
constructing arguments. They make conjectures and build a logical
progression of statements to explore the truth of their conjectures.
They are able to analyze situations by breaking them into cases, and
can recognize and use counterexamples. They justify their
conclusions, communicate them to others, and respond to the
arguments of others. They reason inductively about data, making
MAFS.K12.MP.3.1:
plausible arguments that take into account the context from which
the data arose. Mathematically proficient students are also able to
compare the effectiveness of two plausible arguments, distinguish
correct logic or reasoning from that which is flawed, and-if there is
a flaw in an argument-explain what it is. Elementary students can
construct arguments using concrete referents such as objects,
drawings, diagrams, and actions. Such arguments can make sense
and be correct, even though they are not generalized or made formal
until later grades. Later, students learn to determine domains to
which an argument applies. Students at all grades can listen or read
the arguments of others, decide whether they make sense, and ask
useful questions to clarify or improve the arguments.
Model with mathematics.
Mathematically proficient students can apply the mathematics they
know to solve problems arising in everyday life, society, and the
workplace. In early grades, this might be as simple as writing an
addition equation to describe a situation. In middle grades, a student
might apply proportional reasoning to plan a school event or analyze
a problem in the community. By high school, a student might use
geometry to solve a design problem or use a function to describe how
one quantity of interest depends on another. Mathematically
proficient students who can apply what they know are comfortable
making assumptions and approximations to simplify a complicated
situation, realizing that these may need revision later. They are able
to identify important quantities in a practical situation and map their
relationships using such tools as diagrams, two-way tables, graphs,
flowcharts and formulas. They can analyze those relationships
mathematically to draw conclusions. They routinely interpret their
mathematical results in the context of the situation and reflect on
whether the results make sense, possibly improving the model if it
has not served its purpose.

$\left.\begin{array}{|l}\begin{array}{l}\text { Use appropriate tools strategically. } \\ \\ \\ \text { Mathematically proficient students consider the available tools when } \\ \text { solving a mathematical problem. These tools might include pencil and } \\ \text { paper, concrete models, a ruler, a protractor, a calculator, a } \\ \text { spreadsheet, a computer algebra system, a statistical package, or } \\ \text { dynamic geometry software. Proficient students are sufficiently } \\ \text { familiar with tools appropriate for their grade or course to make } \\ \text { sound decisions about when each of these tools might be helpful, } \\ \text { recognizing both the insight to be gained and their limitations. For } \\ \text { example, mathematically proficient high school students analyze } \\ \text { graphs of functions and solutions generated using a graphing } \\ \text { calculator. They detect possible errors by strategically using } \\ \text { estimation and other mathematical knowledge. When making } \\ \text { mathematical models, they know that technology can enable them to } \\ \text { visualize the results of varying assumptions, explore consequences, } \\ \text { and compare predictions with data. Mathematically proficient } \\ \text { students at various grade levels are able to identify relevant external } \\ \text { mathematical resources, such as digital content located on a website, } \\ \text { and use them to pose or solve problems. They are able to use } \\ \text { technological tools to explore and deepen their understanding of } \\ \text { concepts. }\end{array} \\ \begin{array}{l}\text { Attend to precision. } \\ \text { Mathematically proficient students try to communicate precisely to }\end{array} \\ \begin{array}{ll}\text { MAFS.K12.MP.6.1: } \\ \text { others. They try to use clear definitions in discussion with others and } \\ \text { in their own reasoning. They state the meaning of the symbols they } \\ \text { choose, including using the equal sign consistently and appropriately. }\end{array} \\ \text { They are careful about specifying units of measure, and labeling axes } \\ \text { to clarify the correspondence with quantities in a problem. They } \\ \text { calculate accurately and efficiently, express numerical answers with a } \\ \text { degree of precision appropriate for the problem context. In the } \\ \text { elementary grades, students give carefully formulated explanations to } \\ \text { each other. By the time they reach high school they have learned to } \\ \text { examine claims and make explicit use of definitions. }\end{array}\right\}$

Look for and make use of structure.
Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the
shapes have. Later, students will see 7×8 equals the well
remembered $7 \times 5+7 \times 3$, in preparation for learning about the
distributive property. In the expression $\mathrm{x}^{2}+9 \mathrm{x}+14$ older students
MAFS.K12.MP.7.1
significance of an existing the 9 as $2+7$. They recognize the
strategy of drawing an auxiliary line for solvic figure and can use the
can step back for an overview and shift perspective. They can see
complicated things, such as some algebraic expressions, as single
objects or as being composed of several objects. For example, they
can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and
use that to realize that its value cannot be more than 5 for any real
numbers x and y.

Reference Sheets:

- Reference sheets and z-tables will be available as online references (in a pop-up window). A paper version will be available for paper-based tests.
- Reference sheets with conversions will be provided for FSA Mathematics assessments in Grades 4-8 and EOC Mathematics assessments.
- There is no reference sheet for Grade 3.
- For Grades 4, 6, and 7, Geometry, and Algebra 2, some formulas will be provided on the reference sheet.
- For Grade 5 and Algebra 1, some formulas may be included with the test item if needed to meet the intent of the standard being assessed.
- For Grade 8, no formulas will be provided; however, conversions will be available on a reference sheet.
- For Algebra 2, a z-table will be available.

Grade	Conversions	Some Formulas	z-table
3	No	No	No
4	On Reference Sheet	On Reference Sheet	No
5	On Reference Sheet	With Item	No
6	On Reference Sheet	On Reference Sheet	No
7	On Reference Sheet	On Reference Sheet	No
8	On Reference Sheet	No	No
Algebra 1	On Reference Sheet	With Item	No
Algebra 2	On Reference Sheet	On Reference Sheet	Yes
Geometry	On Reference Sheet	On Reference Sheet	No

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Grade 6 Mathematics Item Specifications

Florida Standards Assessments

Sample Item	Item Type	
A jar of marbles is shown.	Table Item	
Complete the table to show the ratios.		
Red: Green		
Blue: Total Marbles		

See Appendix for the practice test item aligned to this standard.

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.RP Ratio and Proportional Relationships MAFS.6.RP. 1 Understand ratio concepts and use ratio reasoning to solve problems. MAFS.6.RP.1.2 Understand the concept of a unit rate $\frac{a}{b}$ associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $\frac{3}{4}$ cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."	
Assessment Limits	Items using the comparison of a ratio will use whole numbers. Rates can be expressed as fractions, with ":" or with words. Units may be the same or different across the two quantities. Context itself does not determine the order. Name the amount of either quantity in terms of the other as long as one of the values is one unit.	
Calculator	No	
Item Types	Editing Task Choice Equation Editor GRID Hot Text Multiple Choice Multiselect Table Item	
Context	Required	
Sample Item		Item Type
Which statement describes a unit rate? A. Sara ate 1 cookie. B. Sara is driving 16 miles. C. Sara is driving 30 miles per 1 hour. D. Sara ate 3 crackers and 1 apple.		Multiple Choice
See Appendix for th	practice test item aligned to this standard.	

Content Standard	MAFS.6.RP Ratios and Proportional Relationships. MAFS.6.RP. 1 Understand ratio concepts and use ratio reasoni MAFS.6.RP.1.3 Use ratio and rate reasoning to solve real-wor problems, e.g., by reasoning about tables of equivalent ratios, double number line diagrams, or equations. MAFS.6.RP.1.3a Make tables of equivalent ratios relating qua number measurements, find missing values in the tables, and values on the coordinate plane. Use tables to compare ratios. MAFS.6.RP.1.3b Solve unit rate problems including those invo constant speed. For example, if it took 7 hours to mow 4 lawn how many lawns could be mowed in 35 hours? At what rate w mowed? MAFS.6.RP.1.3c Find a percent of a quantity as a rate per 100 quantity means $\frac{30}{100}$ times the quantity); solve problems invo whole, given a part and the percent. MAFS.6.RP.1.3d Use ratio reasoning to convert measurement and transform units appropriately when multiplying or dividin MAFS.6.RP.1.3e Understand the concept of Pi as the ratio of a circle to its diameter.
Assessment Limits	Rates can be expressed as fractions, with ":" or with words. Units may be the same or different across the two quantities. Percent found as a rate per 100. Quadrant I only for MAFS.6.RP.1.3a.
Calculator	No
Item Types	Editing Task Choice Equation Editor GRID Hot Text Multiple Choice Multiselect Open Response Table Item
Context	Allowable
Sample Item	
Tom knows that in his school 10 out of every 85 students are left-handed. There are 391 students in Tom's school. How many students in Tom's school are left-handed?	

13 |
Page
May 2016

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Sample Item			Item Type
The standard length of film on a film reel is 300 meters. On the first day of shooting a movie, a director uses 30% of the film on one reel. How long is the strip of film that was used?			Equation Editor
A paint mixture uses a specific blue to green ratio.			Table Item
Complete the table using the ratio given.			
Paint Mixture			
Blue Paint		Green Paint	
2		5	
4			
6			
A table of equivalent ratios is shown.			GRID
Ratios			
20	2		
40	4		
60	6		
80	8		

Use the Add Point tool to plot these points on the coordinate grid.

See Appendix for the practice test item aligned to this standard.

Content Standard	MAFS.6.NS The Number System MAFS.6.NS.2 Compute fluently with multi-digit numbers and find common factors and multiples. MAFS.6.NS.2.2 Fluently divide multi-digit numbers using the standard algorithm.				
Assessment Limits	Items may only have 5-digit dividends divided by 2-digit divisors or 4-digit dividends divided by 2- or 3-digit divisors. Numbers in items are limited to non-decimal rational numbers.				
Calculator	No	Equation Editor Multiple Choice			
Item Types	No context	Item Type			
Context	Sample Item				Equation Editor
An expression is shown.					
2925 $\div 15$	What is the value of the expression?				
See Appendix for the practice test item aligned to this standard.					

Content Standard	MAFS.6.NS The Number System MAFS.6.NS.2 Compute fluently with multi-digit numbers and find common factors and multiples. MAFS.6.NS.2.3 Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.				
Assessment Limits	Numbers in items must be rational numbers. Items may include values to the thousandths place. Items may be set up in standard algorithm form.				
Calculator	No	Equation Editor Multiple Choice			
Item Types	Allowable	Equation Editor			
Context	Sample Item An expression is shown. 2312.2 +3.4 What is the value of the expression?				
See Appendix for the practice test item aligned to this standard.					

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.NS The Number System MAFS.6.NS. 3 Apply and extend previous understandings of numbers to the system of rational numbers. MAFS.6.NS.3.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	
Assessment Limits	Numbers in items must be rational numbers. Items should not require the student to perform an ope	
Calculator	No	
Item Types	Editing Task Choice Equation Editor GRID Hot Text Multiple Choice Multiselect Open Response	
Context	Required	
Sample Item		Item Type
Chicago, Illinois has Desert Shores, Calif Select all the true Desert Shores is Desert Shores is Desert Shores is The difference i The difference i The difference in	an elevation of 600 feet above sea level. The elevation of ornia is -200 feet. atements. above sea level. is sea level. is below sea level. the elevations is less than 600 feet. the elevations is 600 feet. the elevations is more than 600 feet.	Multiselect
Desert Shores, Cali What is a possible A. 600 feet B. 500 feet C. -200 feet D. 0 feet	ornia is located at an elevation that is below sea level. evation of Desert Shores, California?	Multiple Choice
See Appendix for th	practice test item aligned to this standard.	

Content Standard	MAFS.6.NS The Number System MAFS.6.NS. 3 Apply and extend previous understandings of numbers to the system of rational numbers. MAFS.6.NS.3.6 Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. MAFS.6.NS.3.6a Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite. MAFS.6.NS.3.6b Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. MAFS.6.NS.3.6c Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane. Also Assesses: MAFS.6.NS.3.8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
Assessment Limits	Numbers in items must be rational numbers. Plotting of points in the coordinate plane should include some negative values (not just first quadrant). Numbers in MAFS.6.NS.3.8 must be positive or negative rational numbers. Do not use polygons/vertices for MAFS.6.NS.3.8. Do not exceed a 10×10 coordinate grid, though scales can vary.
Calculator	No
Item Types	Editing Task Choice Equation Editor GRID Hot Text Matching Item Multiple Choice Multiselect
Context	Allowable
Sample Item	
What is the opposi	of -5 ? ${ }^{\text {equation Editor }}$

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Sample Item	Item Type
Point A is shown on the coordinate grid. Use the Add Point tool to plot four points that are all 7 units away from point A.	GRID
A map of a town is shown. The town wants to build a new library that is 5 blocks away from the park and 6 blocks away from the school. Use the Add Point tool to plot the location where the library should be built.	GRID

See Appendix for the practice test items aligned to these standards.

Content Standard	MAFS.6.NS The Number System MAFS.6.NS. 3 Apply and extend of rational numbers. MAFS.6.NS.3.7 Understand ord MAFS.6.NS.3.7a Interpret state relative position of two number $-3>-7$ as a statement that oriented from left to right. MAFS.6.NS.3.7b Write, interpre numbers in real-world contexts fact that $-3^{\circ} \mathrm{C}$ is warmer than MAFS.6.NS.3.7c Understand th from 0 on the number line; inte negative quantity in a real-world -30 dollars, write $\|-30\|=30$ MAFS.6.NS.3.7d Distinguish com order. For example, recognize th represents a debt greater than
Assessment Limit	Numbers in items must be positivil
Calculator	No
Item Types	Editing Task Choice Equation Editor GRID Hot Text Matching Item Multiple Choice Multiselect Open Response
Context	Allowable
Sample Item	
Which value is furthest from 0 on the number line?A. 20B. -21C. $\|20.5\|$D. $\|-21.5\|$	

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.EE Expressions and Equations MAFS.6.EE.1 Apply and extend previous understandings of arithmetic to algebraic expressions. MAFS.6.EE.1.1 Write and evaluate numerical expressions involving whole-number exponents.		
Assessment Limits	Whole number bases. Whole number exponents.		
Calculator	No	Equation Editor Multiple Choice Item Types	Multiselect

See Appendix for the practice test item aligned to this standard.

Content Standard	MAFS.6.EE Expressions and Equations MAFS.6.EE. 1 Apply and extend previous understandings of arithmetic to algebraic expressions. MAFS.6.EE.1.2 Write, read, and evaluate expressions in which letters stand for numbers. MAFS.6.EE.1.2a Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y. MAFS.6.EE.1.2b Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms. MAFS.6.EE.1.2c Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=\frac{1}{2}$.
Assessment Limit	Numbers in items must be rational numbers.
Calculator	No
Item Types	Editing Task Choice Equation Editor Hot Text Multiple Choice Multiselect Open Response
Context	Allowable
Sample Item	
Which expression A. 3 B. $2 x^{5}$ C. $4 x^{2}$ D. $\frac{3 x}{2}$	as a coefficient of 2 ? Multiple Choice

Grade 6 Mathematics Item Specifications

Florida Standards Assessments

Sample Item	Item Type
Jeffrey's brother Max is 5 years older than twice Jeffrey's age. Write an expression that represents the relationship of Max's age in terms of Jeffrey's age, j.	Equation Editor
What is the surface area, in centimeters, of a cube with a side length, s, of $\frac{1}{3} \mathrm{~cm} ?$	Equation Editor
See Appendix for the practice test item aligned to this standard.	

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.EE Expressions and Equations MAFS.6.EE. 1 Apply and extend previous understandings of arithmetic to algebraic expressions. MAFS.6.EE.1.3 Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	
Assessment Limits	Positive rational numbers, values may include exponents. Variables must be included in the expression. For items using distribution, coefficients may be fractions before distribution but must be integer values after simplification. Only positive rational numbers may be distributed.	
Calculator	No	
Item Types	Equation Editor Multiple Choice Multiselect	
Context	Allowable	
Sample Item		Item Type
Create an expression that is equivalent to $3 x+2 x+x$, using the fewest terms.		Equation Editor
Alyssa attends football games at her school. At each football game, she buys a bottle of water for $\$ 0.75$ and a candy bar for $\$ 0.90$. Select all expressions that represent the amount of money, in dollars, Alyssa spends after attending 6 football games. ㅁ 6(0.75)(0.90) - $\quad 6(0.75+0.90)$ ㅁ $\quad 6(0.75)+6(0.90)$ ㅁ $6+0.75+0.90$ ㅁ $(6+0.75)(6+0.90)$		Multiselect

See Appendix for the practice test item aligned to this standard.

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE.2 Reason about and solve one-variable equations and inequalities. MAFS.6.EE.2.5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	
Assessment Limits	Numbers in items must be nonnegative rational numbers. One-variable linear equations and inequalities. An equation or inequality should be given if a context is included. Inequalities are restricted to < or >.	
Calculator	No	
Item Types	Equation Editor Matching Item Multiple Choice Multiselect Open Response	Allowable

Grade 6 Mathematics Item Specifications

Florida Standards Assessments

Sample Item	Item Type
$\frac{27}{7}$ $n>\frac{4}{3}$ Select all the values of n that make the inequality true. Multiselect \square $\frac{2}{5}$ \square $\frac{1}{3}$ \square 1 \square $\frac{2}{9}$ \square $\frac{3}{2}$ 	

See Appendix for the practice test item aligned to this standard.

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE. 2 Reason about and solve one-variable equations and inequalities. MAFS.6.EE.2.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	
Assessment Limits	Numbers in items must be nonnegative rational numbers. Expressions must contain at least one variable.	
Calculator	No	
Item Types	Equation Editor Matching Item Multiple Choice Open Response	
Context	Allowable	
Sample Item		Item Type
Jason makes 30 dollars an hour. He spends 40 dollars a day on transportation and food. Write an expression to describe his spending and earnings for the day, where x is the number of hours that Jason works that day.		Equation Editor
Write an expression to represent the sum of three consecutive integers, the smallest of which is n.		Equation Editor
See Appendix for the practice test item aligned to this standard.		

Content Standard	MAFS.6.EE Expressions \& Equations MAFS.6.EE. 2 Reason about and solve one-variable equations and inequalities. MAFS.6.EE.2.7 Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q, and x are all non-negative rational numbers.	
Assessment Limits	Numbers in items must be nonnegative rational numbers. No unit fractions. Items must be one-step linear equations with one variable.	
Calculator	No	
Item Types	Equation Editor Multiple Choice	
Context	Allowable	
Sample Item		Item Type
An equation is shown. $8 x=35$ What is the value for x that makes the equation true?		Equation Editor
Suzie buys a salad for $\$ 5.12$ and is given $\$ 14.88$ as change. Which equation represents the situation if x is the amount Suzie had before she bought the salad? A. $5.12 x=14.88$ B. $x-5.12=14.88$ C. $14.88-x=5.12$ D. $x+5.12=14.88$		Multiple Choice
See Appendix for the practice test item aligned to this standard.		

Content Standard	MAFS.6.EE Expressions and Equations MAFS.6.EE. 2 Reason about and solve one-variable equations and inequalities. MAFS.6.EE.2.8 Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	
Assessment Limits	Numbers in items must be nonnegative rational numbers. Context in real-world items should be continuous or close to continuous. Inequalities are limited to $<$ or $>$.	
Calculator	No	
Item Types	Equation Editor GRID Matching Item Multiple Choice Multiselect Open Response	
Context	Allowable	
Sample Item		Item Type
Graph the inequality $x<50$. $\xrightarrow{\longrightarrow}$		GRID
An airport charges an additional fee for a piece of luggage that weighs more than 50 pounds. Write an inequality that shows the weight Michael's suitcase can be, x, without him having to pay the extra fee.		Equation Editor
See Appendix for the practice test item aligned to this standard.		

Content Standard	MAFS.6.EE Expressions and Equations MAFS.6.EE. 3 Represent and analyze quantitative relationships between dependent and independent variables. MAFS.6.EE.3.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.		
Assessment Limits	Items must involve relationships and/or equations of the form $y=p x$ or $y=x+p$ Numbers in items must be positive rational numbers (zero can be used in the graph and table). Variables need to be defined.		
Calculator	No		
Item Types	Editing Task Choice Equation Editor GRID Matching Item Multiple Choice Multiselect Open Response Table Item		
Context	Required		
Sample Item			Item Type Matching Item
A graph of Evan's bank account is shown. What are the dependent and independent variables?			
Evan's Bank Account			
	Dependent	Independent	
Weeks	\square	\square	
Account Balance	\square	\square	

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Sample Item	Item Type
See Appendix for the practice test item aligned to this standard.	

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. MAFS.6.G.1.1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems.	
Assessment Limits	Numbers in items must be positive rational numbers. Limit shapes to those that can be decomposed or composed into rectangles and/or right triangles.	
Calculator	No	
Item Types	Equation Editor GRID Multiple Choice Multiselect Open Response	
Context	Allowable	
Sample Item		Item Type
What is the area, in square inches, of the shape?		
A pentagon is shown. not to scale What is the area, in square inches, of the pentagon?		Equation Edito
See Appendix for the practice test item aligned to this standard.		

Content Standard	MAFS.6.G Geometry MAFS.6.G. 1 Solve real-world and mathematical problems involving area, surface area, and volume. MAFS.6.G.1.2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=l w h$ and $V=B h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	
Assessment Limits	Prisms in items must be right rectangular prisms. Unit fractional edge lengths for the unit cubes used for packing must have a numerator of 1.	
Calculator	No	
Item Types	Equation Editor GRID Multiple Choice	
Context	Allowable	
Sample Item		Item Type
A right rectangular 8 feet. What is the volum	ism has a length of $41 / 2$ feet, a width of $61 / 2$ feet, and a height of the prism?	Equation Editor
See Appendix for t	actice test item aligned to this standard.	

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Sample Item	Item Type
Konrad has drawn a triangle on a coordinate grid. - One of the vertices is located at ($-1,-2$). - A second vertex has an x-coordinate of 7 and a positive y-coordinate. - The area of the triangle is 20 square units. Use the Connect Line tool to draw a possible triangle that could be Konrad's.	GRID

See Appendix for the practice test item aligned to this standard.

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area and volume MAFS.6.G.1.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	
Assessment Limits	Numbers in items must be positive rational numbers. Three-dimensional figures are limited to rectangular prisms, triangular prisms, rectangular pyramids, and triangular pyramids.	
Calculator	No	
Item Types	Equation Editor GRID Matching Item Multiple Choice Multiselect	
Context	Allowable	
Sample Item		Item Type
A net is shown. Which three-dimen	sional figure is rep A. B.	Multiple Choice

Grade 6 Mathematics Item Specifications
Florida Standards Assessments
Sample Item

See Appendix for the practice test item aligned to this standard.

Content Standard	MAFS.6.SP Statistics and Probability MAFS.6.SP. 1 Develop understanding of statistical variability. MAFS.6.SP.1.1 Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	
Assessment Limits	N/A	
Calculator	No	
Item Types	Editing Task Choice Hot Text Multiple Choice Multiselect Open Response	
Context	Required	
Sample Item		Item Type
Select all of the statistical questions.How many days are in the year?How many houses are in your town?What percent of Long Grove High School students like pizza?What is the average temperature in January?When does Matchell Bank open in the morning?		Multiselect
See Appendix for t	practice test item aligned to this standard.	

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.SP Statistics and Probability MAFS.6.SP. 1 Develop understanding of statistical variability. MAFS.6.SP.1.2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	
Assessment Limits	Numbers in items must be rational numbers. Dot/line plots, histograms, and box plots are allowed.	
Calculator	No	
Item Types	Equation Editor GRID Multiple Choice Multiselect	
Context	Allowable	
Sample Item		Item Type
A data set is shown.		Equation Editor
$11,13,13,13,14,14,15,15,16,16,18$		
What is the mean of the data set?		
See Appendix for the practice test item aligned to this standard.		

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Grade 6 Mathematics Item Specifications

Florida Standards Assessments

Sample Item	Item Type
Robert asked each family member his or her age and recorded the data as shown. $1,4,11,19,21,28,36,41,61,62$ Click on the graph to create a histogram that displays these data. Age	GRID
$\begin{array}{lllllll}0-9 & 10-19 & 20-29 & 30-39 & 40-49 & 50-59 & 60+\end{array}$	
See Appendix for the practice test item aligned to this standard.	

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Content Standard	MAFS.6.SP Statistics and Probability MAFS.6.SP. 2 Summarize and describe distributions MAFS.6.SP.2.5 Summarize numerical data sets in relation to their by: MAFS.6.SP.2.5a Reporting the number of observations. MAFS.6.SP.2.5b Describing the nature of the attribute under inve including how it was measured and its units of measurement. MAFS.6.SP.2.5c Giving quantitative measures of center (median variability (interquartile range and/or mean absolute deviation), describing any overall pattern and any striking deviations from the with reference to the context in which the data were gathered. MAFS.6.SP.2.5d Relating the choice of measures of center and varian shape of the data distribution and the context in which the data	context, such as stigation, nd/or mean) and as well as overall pattern riability to the were gathered.
Assessment Limits	Numbers in items must be rational numbers. Displays should include only dot/line plots, box plots, or histogram	
Calculator	No	
Item Types	Editing Task Choice Equation Editor GRID Hot Text Multiple Choice Multiselect	
Context	Required	
Sample Item		Item Type
Tim drives the Grand each week for 5 we	Avenue bus route. The total number of people who ride the bus ks is shown in the data table.	Equation Editor
Week \quad Num	ber of people	
1	16,325	
2	18,140	
3	17,362	
4	16,697	
5	16,786	
What is the range of the number of people who ride the bus each week?		

Grade 6 Mathematics Item Specifications
Florida Standards Assessments

Sample Item	Item Type
Alex found the mean number of food cans that were donated by students for the canned food drive at Epping Middle School. Alex's work is shown. $\frac{1+2+5+3+6+1+4+4+2+1+2+3+7+2+4+1}{16}=3$ How many students donated food cans?	Equation Editor
Tim drives the Grand Avenue bus route. The total number of people who ride the bus each week for 5 weeks is shown in the data table. What is the interquartile range of the data?	Equation Editor
A graph shows the number of cans students at Epping Middle School collected for a canned food drive. Canned Food Drive Select all of the statements that describe the best measure of center to represent the data set. Mode Mean Range Median Interquartile Range	Multiselect

Florida Standards Assessments

Sample Item	Item Type
A box plot shows the spread of the numbers of cans brought by students for a food drive. Create a possible line plot, given that 25 students donated cans, using the values from the box plot. Canned Food Drive	GRID

Appendix A

The chart below contains information about the standard alignment for the items in the Grade 6 Mathematics FSA Computer-Based Practice Test at http://fsassessments.org/students-and-
families/practice-tests/.

Content Standards	Item Types	Computer-Based Practice Test Item Number
MAFS.6.RP.1.1	GRID	2
MAFS.6.RP.1.2	Equation Editor	5
MAFS.6.RP.1.3e	Multiple Choice	21
MAFS.6.NS.1.1	Multiple Choice	8
MAFS.6.NS.2.2	Equation Editor	10
MAFS.6.NS.2.3	Equation Editor	20
MAFS.6.NS.2.4	Matching Item	15
MAFS.6.NS.3.5	Multiselect	24
MAFS.6.NS.3.6	GRID	12
MAFS.6.NS.3.7	Multiselect	4
MAFS.6.NS.3.8	Equation Editor	29
MAFS.6.EE.1.1	Equation Editor	14
MAFS.6.EE.1.2	Multiselect	17
MAFS.6.EE.1.3	Equation Editor	27
MAFS.6.EE.1.4	Multiple Choice	1
MAFS.6.EE.2.5	Matching Item	3
MAFS.6.EE.2.6	Open Response	23
MAFS.6.EE.2.7	Equation Editor	9
MAFS.6.EE.2.8	GRID	19
MAFS.6.EE.3.9	Table	6
MAFS.6.G.1.1	GRID	18
MAFS.6.G.1.2	Equation Editor	26
MAFS.6.G.1.3	GRID	7
MAFS.6.G.1.4	Equation Editor	13
MAFS.6.SP.1.1	Multiple Choice	11
MAFS.6.SP.1.2	GRID	25
MAFS.6.SP.1.3	Multiselect	28
MAFS.6.SP.2.4	Multiple Choice	16
MAFS.6.SP.2.5	Equation Editor	22

Appendix B: Revisions

Page(s)		Date
$10-11$	Item types revised.	May 2016
12	Item types revised.	May 2016
$13-14$	Item types and sample items revised.	May 2016
17	Context revised.	May 2016
19	Item types revised.	May 2016
$20-22$	Content standards and item types revised.	May 2016
$23-24$	Content standards and item types revised.	May 2016
25	Context revised.	May 2016
$26-27$	Item types and sample items revised.	May 2016
28	Assessment limits revised.	May 2016
29	Item types and sample item revised.	May 2016
$30-31$	Assessment limits, item types, and sample items revised.	May 2016
32	Item types revised.	May 2016
34	Assessment limits revised.	May 2016
$35-36$	Assessment limits, item types, and sample items revised.	May 2016
37	Item types revised.	May 2016
38	Content standard, item types, sample item revised.	May 2016
$39-40$	Sample items revised.	May 2016
43	Item types revised.	May 2016
44	Item types and sample item revised.	May 2016
45	Sample item revised.	May 2016
$48-50$	Item types and sample items revised.	May 2016
51	Appendix A added to show Practice Test information.	May 2016

Grade 6 FSA Mathematics Reference Sheet

Customary Conversions

1 foot = 12 inches
1 yard = 3 feet
1 mile = 5,280 feet
1 mile $=1,760$ yards

1 cup $=8$ fluid ounces
1 pint $=2$ cups
1 quart $=2$ pints
1 gallon = 4 quarts
1 pound $=16$ ounces
1 ton = 2,000 pounds

Metric Conversions

1 meter = 100 centimeters
1 meter $=1000$ millimeters
1 kilometer $=1000$ meters

1 liter = 1000 milliliters

1 gram = 1000 milligrams
1 kilogram = 1000 grams

Time Conversions

1 minute $=60$ seconds
1 hour $=60$ minutes
1 day $=24$ hours
1 year = 365 days
1 year = 52 weeks

Formulas

$A=b h$
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$A=I w$
$A=\frac{1}{2} b h$
$V=B h$
$V=I w h$

